"\02
g, 130 shows tho vertieal stress  distribution on
e r from the axls of londing, The

cal line at distance
fiest increases, attaing o maximum value, and
It can be shown (see example 13.2) that
rtical ling is obtained

a verti
vertical Stress
then decreases, ‘
the maximum value of oy nn‘u ve i
at the point of intersection of the vertical plane with a
tadial line at p=39° 15" through the point load, as shown
in Big. 13.4. The corresponding value of E" = 0.817

r 1
or N TR AR X T A
for which Ky =0.1332
0.1332 Q0
Hence o (O2)ma = W = 0.088!? Q.

Example 13.1, Find the intensity of vertical pressure FIG- '13.4. o DISTRIBUTION
VERTICAL LiNg, - O

and horizontal shear stress at a point 4 m directly below
a 20 kN point load acting at a horizontal ground surface. What will be vertical p
ressur

and shear stress at a point 2 m horizontally away from the axis of loading but 4
1

same depth of 4 m?
Solution : (a) r=0 ; z=4 m ; Q=20 kN.

From Eq. 13.2, Oz = BQZ l 3 GENELL 0.597 kKN/m’
2nz 1+(_{] 2x 7 x (47
7 .
s .
From Eq. 13.3, Try = 30 rzz 7 = 3grf_ 1 P* =0 (since r=0).
' 2n (P42 2 | (Y -
(z)

Alternatively, From Table 13.1, Kp (for §=0)=0.4775

oy =Ky 220475 X204 507 kN/m.
2 (4)2

Z
(b) r=2 m; Z=4m.'. §=05
2
gpmix20r__1 T’ - 0.342 kN/m’
21 (4)*| 1+ (0.5)
5/2
= @E | 1+ 05) |
Q 0.2733 x 20 . )
=Ky S = 0342 kN/T
Alternatively, Kp ( for ==0.5 J =0.2733 oz = Ab 22 o |
2 _ 2
tr= Oz L=0342 %77 0.171 kN/m
2 .

and .
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piST
£ e 13.2 Prove that the maximum verticq) str 3
am om the axis of a vertical load is €SS on a vertica] jine
at a constans

: !aﬂce_ e 1 ] s
dst 1 line with a radial line at B =39° 15° from (pe

sl . point of i
';}};e ertic? ill be the value of shear stress ar the Point of application OJ{C:,"’:Z :aron
;d!f Wh g, vertical SITESS on a line situated at r= _)f:f;: ? Hence, or otheryise r;zei
(i ) =4 om d v1se, JIn
4 ﬂmf yalué 20 KN- . the axis of a concentrated
g 0 ption (Refer Fig. 13.4)
30 2
, oz = < _ 3
we have 2T 2n (* + £y 2 =5 .Q_l 1 & )
2nz i (L)z ...(13.2)
: Z
the maximum value of oz ( where r is constant), dj -
(Fotro . and equate it to zero. ), differentiate Eq. 13.2. with
S PR At Chde Mk
EZ @+ A7 =0
2 =4 _ .
322(,-2 +2°) I 527 =0, from which z= N, 3/)r=125r ..(13.12)
r_+f2 - ——=0.817 =tan - o it
;—\[3- 1.225 g - B=39 15
r .,’2 ,’ 3 .
qubsiruting the value of -Z-= 3 and z="V5 7 I Eq. 13.12, we get
30 1 1 P2 @ 1 0 32
e _1 P = - =0.0888% (13.13
(02)max = 77 W[ 1+ %T r 1+ r _ )

= (0.0888 .Q] « 0.817 = 0.0725 ','QZ

Mo~

o

39 rZ 30r 1 /2_( '
= ) —_ =t = Gz)mat
n (r2+22)5/2 2 ZS\V 1+(£]2 I )
Z
5 (1319

o= 0.0888 x 3 =0.444 KN/m’

Z= 1.225 r=2-45 m

g 00725 x20 _ 362 kN/m’
Q.=

=

When r=2 m and Q =20 kN, (oz)
which occurs at
Als-o Tﬁ = 0.0725

OADED CIRCULAR AREA

134, ORMLY L
VERTICAL PRESSURE UNDER A UNIF nerated load can

The Boussinesq equation for the vertical stress & > he vertcal axis passing

E’rw be extended to find the vertical Pressure on anyFPmn;S 5 shows a upiformly loaded
5 o. . - :

Wough the centre of a uniformly loaded circular area. K18 Assume the soil as an elasuc,

ClIc . . 1 €da.
“OUlar area of radius @ and load intensity ¢ per Wt &

Botron;
tropic, semi-infinite mass.

Cleme Consider an elementary ring Of radius T and wit:l:h
: ing | ivi i arts, €2 _
tleg fary ring is further divided 1nto ;m;l;ypbe considered . a poi

Uary area will be g 4. This 102

th or on'the-loaded qrea. 1f the
the load on each

Scannhed with Camoca



A Oy
. _ by
situated at depth z on the vertical axig 'hrough 71%

g. 13.2 . the

ure at pOint ! o
G

3 ¢
Ty

. S .
Vemcal Pref iS evidenﬂy glven by E

£ the ared _ 3(q. 514) Z
86z = I (r2 +ZZ)5£2
Integrating over the entire ring of radius 7, the vertical stress Aoy i o
3g 2nrén) 7 : z Y
3 2 _3 = 3qr &r Y
AGZ:Z% (Z84) 7 T " 2n - (P + )7 ! m

The total vertical pressuré oz due to the
entire loaded area is given by integrating the above
expression between the limits r =0 to r=a.

a rdr
. (,.z + zz)szz

Put P +Z7=n*>, so that rdr=ndn

0'z==3423

e . when r=0,n=2 .
Lmits : ) yhenr=a, n=(@+2)

2 1/2
(a ,+Zz) d
0'z=3qzj _:1'
Z . It

_ i1
_qz’[f (az+zz)3/2J

3’2
Cz=¢q 1—(

172

L ’ ...(13.15)
a
1+(7)
or oz=Ks.q ...(13.16)

where Kp = Boussineq influence factor for
uniformly distributed circular load

13.5. UNIFORMLY DISTRIBUTED LOAD

FIG.
OVER CIRCULAR AREA.

...(13.16 a)

Table 13.5. given the value of the influence factors for various values of

7

. The vertical pressure at a given depth on the vertical axis . through the centre ©
the circular loaded area can be found by multiplying the influence factor by the load intensiy

q. For the vertical pressure at any other point not situated under the centre of the circul

load, reference is drawn to article 5 of chapter 14.

of the loading, Eq. 13.15 reduces to

If © is the angle which the line joining the point P makes with the oOuter o

oz =q [1 - cos® e'] (131

Scanned with CamSca



e RrIpUTION
T

RL INFLUENCE FACTORS '
| MR » S FOR ViR
pADLE UNIFORMLY 1op mi){:!\'ul"“"ﬁmnuc UN =
P —T K a1 AR Ariy OUR CENTRg
" by Ky \
LR - - X
—— D — f1
0.0000 — = \
/o.bﬂ 0.0 Lo  e—t—i___ Ky
\ —— \ & \

- 0.0 ‘ — 0.6956 e e— 0.9488
,,fo';;""' 0.0328 115 e 3.0 ot
\ u . . \___-?.__ ; .
/02’0"" 0.0571 1,20 N*O%Ui-—_ 3. "“'“(;;;"2“:—--

\ Vo "“—-...___t .
/T—- 0.0869 1.25 — D6 4.0 Y
0.2 - 0.7562 T 09857

- 0.1213 S T et R
/9_-_2__ : 0.7733 T 088
LA L1 1,33 ommo [ e |—loms
/__9;40? 0.1996 1.40 0.8036 - 0.9943
| 045 0.2417 1.45 0.8170 2'0 0.9936
- 0.2845 1.50 o .3 0.9965
| —— : 7.0 0.9972
0.5 0.3273 1.55 0.8407 '
[ — : 8.0 0.9981
0.60 0.3695 1.60 0.85 '
e Caloc 8511 9.0 0.9987
0. J 1.65 0.8608 10 0.9990
0.70 0.4052 1.70 0.8697 12 0.9994
0.75 0.4880 1.75 0.8779 14 0.9996
0.80 0.5239 1.80 0.8855 16 0.9998
0.85 0.5577 1.85 0.8925 20 0.9999
0.50 0.5893 1.90 0.8990 100 1.0000
0.95 0.6189 1.95 ~0.9050 0 1.0000

Diameter 2a

Fig 13.6. shows a ‘ LS
fa‘PﬂY of isobars under a \qu 3
:rnelzorilinly loaded circular / \ \\ g'}’g // \

» lirst presented by Jur- ’ 080777
Buson (1934), : \ §0.5q7/ / a
gy With the help of this AN %.‘;‘gcc]] / #‘
" a;n, the vertical pres- k \ - \_}/ / )

®of various poj
; § points
3 points below Mﬁ 0.1q | 005q ]
005q| 0.1 - |/ !
\

,heclrcmar loaded area can | ‘-’l
}._3_4._3_.;‘_&__4.._“,4.—&_4‘_.:‘

o )
minednvemenuy e .
‘ A UNIFORMLY LOADED CIRCULAR AREA.
¢

=]

FIG. 13.6. ISOBARS UNDER

1, |
8. VERT]C AL PRESSURE DUE TO A LINE LOAD iy g per unit length, acting
Let ug i s fin ] line load of mtc‘fbly. firected along the direction
O the e coxfxsmer an 1nﬁmteiy ﬁ:“‘iedi“m Let the y-axis be ¢
: € of a semi-infinite elas ' :

Scdilneu wil udiroca



_ ' will be €equa
this leﬂg[hh can be Considered to

+ . 8y, whic
ge a concemrated load. Hence the

vertical Stress A

cz=

or Gz

g _ 3q4y 7
mRE (@ +y + D)
R J‘+00 3 qrz3dy _9 J‘OO q qrz?ndy
f2.= o 2002+ Y + ) 0 2m(x* + ) + A
2 ¢'7 24 1 (B
1 nz 2 R 13.1§)
SRy

In the above expression x and z are constants for a given position of a point p

and the only variable is y. Also,
load, in a direction perpendicular
below the line load, at a depth gz,

T 0w
dy\( kil
- O —
n
q’ :\\ \x
N ' \R :
N \
’dJ Z O'J___\\_____x__
. - - \\ i \\ -
-7 - \\:\\ y
Pxy,2)
FIG. 13.7. LINE LOAD

lementary load is given by

x is the horizontal distance of point P from' the line
to the line load. When the point P is situated vertically
we have x =0, and hence the vertical stress is given by

2 ]
g (13.19)

Oz = ——
nZ

13.6. VERTICAL PRESSURE UNDER STRIP LOAD

. .Fig. 13.8 shf:)ws an infinite strip of width B, loaded with uniformly distributed load
Intensity. ¢ per unit area. Let us find the vertical pressure at a point P situated below

a depth z, on a vertical axis passing through the centre of the strip.

. Cor!sider.a strip load of width dx, at distance x from the centre. The elementary
line load intensity along this elementary strip of width dx will be q.dx. The vertical pressure

at P due to this elementary line load is given by Eq. 13.18,

2(q dx)
Tz

TR A

_To_tal vertical pressure due to the. whole strip load is given by

Scdilneu wit udirnoscda



. SO AR Foyyy
- o ATy
pit will exert a pressure equal to 0.005 7 in Oxg

at

-
i

e equal to rz cm. By extending ¢,
e

X e ic circle b
} - tric
- radius of cecond concen . . e s
Let :’c-'rzd o the two comcentric circles is again divided into 20 &
the space between : : equy) ity
(. The vertical pressure, at the centre, qyo . 4t

h area uni

racial [mES.
f intensity 0.005

el )
= - Ay A2 B2 B, is on€ suc

ninsistobeo

g. Therefore, the total pressyre . €agp
|

5 cm below thel centre is 2 000;: t

o these arz2 U -
grez umits OAtB and A1 A2 B2 B at depth z= |
Heore fTO0 A5 - :
geore from EQ- i3 | 0 |
) 2

1+[Z)

2.00 cm from the above relation. Similar]y th
» Uig

-=5 cm, we get =
les can be calculated, as tabulated j
ted 1n Tab]e

Spbstiuins

= of 3rd, 4th S5th 6th Tth 8th, 9th circ :
13.8. The radmus of 10th circle is given by the following govermng equation :
3/2 ' ,
rare 1 Z 10 x 0.005 g = <L
20 1+[I‘|g Jz -, 20
z

From the 2Dove ryy = infinity.
Dl OF CONCENTRIC CIRCLES FOR INFLUENCE CHART
divided into 20 parts)

TABLE 13.8 RA
(z=5 cm; ir = 0.005; each circle
Nomier of cirdes 1 2 3 4 5 6 7 8 9 9% 10
Rxlzs (am) 1.35 | 2.00 | 2.59 3.18 | 3.83 | 4.59 554 | 6.94 | 9.54 | 12.62] o
wn on the basis of Table 13.8.

the influence chart dra

Fiz. 13.15. shows
ng the vertical stress at

To wse the chart for determini
grez, the plan of the loaded area i3
te length AB (=5 cm) drawn on the ¢
pressure i required.  For example, if the pressure is to
te sae of plan will be 5 cm = 5m or 1 em = 1 m. The plan of the loaded
zrez 18 then w0 placed over the chart that the. point below which pressurc is required
wAncides with the centre of the chart . The point below which pressure | required mdy
fie within or outside the Joaded area, The total number of area units (including the fractions)
coered by the plan of the Joaded area is counted, The vertical pressure is then calculated
from he selation .
oy = 005 ¢ » My, (where Ny = number of arca units under the loaded arca). (133D

- E,,m,! ple 13.3. A rectangular area 2 m 4 m carries a uniform load of 80 i, P
the eround surface. Find the vertical pressures o Of
2 ? ssures al 5 m below the centre and corner ¢

the loaded ared,
will be énfluence of fou

quian, ?;1) ,Por the point under the centre of the arca, there
ecanghes of size |~ 2 m, having a common corner al the centre of the loaded rectangle:

any point under the loaded

first drawn on a tracing paper to such a scale that
hart represents the depth to the point at which
pe found at a depth of 5 m

Scdilneu witn udlirnoscd



BUTION : I
! 315

gTRESS DIS

z 5 . » n=

. © 0,=4 9K, =4x80 x 0.0328 = 10.5 kN/m’
(b) For the point under the corner of rectangle ;

=2-04

. Hence '

K., (for on€ quadrant) = 0.0328
1

= 4 = . a
a I m ’ b—-2m ’ m_—zl—oz . 2
Z

w0

a=2 m ; b=4 m Som=

o

=04 ; n=3=08
Ks = 0.0931 "+ 0z=q Ky = 80 x 0.0931 = 7.45 kN/m?
gxample 13.4. Solve example 13.3 by the equivalent load method.
Solution. Divide loaded area into four equal rectangles of size 1| m x 2 m. Each
area Will represent 2 point load Q'=1x2x 80 =160 kN acting at its centroid.

(a) For the point under the centre : The
influence of each area unit will be equal

. |~—1m—+—1m—+—1m—+—1m—'1
r'= V1+(0 5) =1.117 i AR ‘:-r; _____ o
2 \\ RS T R '
' 2~ ~~.2
-’-——2———1117 =0.223 S Kp =0.4247 _i‘r_n \ T~
z 5 2 \ > A
o 160 x 4 x 0.4247 ‘*‘ S RS
oz=— 2Kpg == — 1 N L
z S5x5 + — Y - S
=10.87 kN/m’ 1 4 3
By exact method (example 13.3), 'L
3= 10.5 kN/m’ FIG. 13.16,
' 10.87 - 10.5
% error—T—CiS%

(b)) For the point under corner B : The influence of each area unit will be different.
n, r, r;, r, be the radial distance of centroids of each unit from B.

The corresponding values of r/z and Ky are as under :

Area unit ' ro _ r/’z Kp
1 1407 0.223 0.4247
2 3.040 0.608 0.2174
3 3.360 0.572 0.1880
4 1.800 0.360 ° 0.3521
2Kp=1.1822
! GZ:QZKB=M=7.S7I{N/II‘Z
| Z 25
But by exact method (example 13.3), oz=745 kN/m’
: . 7.57-17.45
' — =156 %
o | % error;\:|1 75 4
Example 13.5 Sowe exa lé\'13.3. using Newmark’s: influence  chart.
Solution, z=5 m /o Hence the scale of the plan will be

ScCdilneu witn udirnoscda
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SOIL MECHANICS AND FOUN,,
N

46 o
3 tion of pre—consohdatlon
a - . .

he preconsohdatlon pressure,

le of clay is consoli-dat(?d
pd the pressure voids-ratio
on a semilog plot, as

Determin
pressure. To find t

an undisturbed sam
in the laboratory an

relationship 1 plotted

in Fi 5.4.
vn in Fig. 1 |
o The initial portion of the curve is flat

d resembles the recompression curve of a
o ulded specimen. The lower portion of the
éslrl:/(c)a, which is a straight lipe, is the laboratory
virgin curve. The approximate value of. the
pre-consolidation pressure o, may be determined
by the following empirical method of A. ——

Casagrande (1936). The point A of maximum
curvature (minimum radius) is selected and FIG. 15.4. PRE-CONSOLIDATION PRESsug

horizontal line AB is drawn. A tangent AC is ' |
drawn to the curve and the bisector AD, bisecting angle BAC is drawn. The straight portjoy -

of the virgin curve is extended back to meet the bisector AD in P. The point P corresponds

to the pre-consolidation pressure o,
15.5. TERZAGHI’S THEORY OF ONE-DIMENSIONAL CONSOLIDATION

The theoretical concept of the consolidation process was developed by Terzaghi (1923).
In the development of the mathematical statement of the consolidation process, the following
simplifying assumptions are made : (i) The soil is homogeneous and fully saturated. (jj) °
Soil particles and water are incompressible. (ifi) The deformation of the soil is due entirely
0 change in volume. (i) Darcy’s law for the velocity of flow of water through soil
is perfectly valid. (v) Coefficient of permeability is constant during consolidation. (vi) Load

Voids Ratio e

is applied in one direction only and deformation occurs only in the direction of the load

application, i.e. the soil is restrained against lateral . deformation. (vii) Excess pore water
drains out only in the vertical direction. (viii) The boundary is a free surface offering
no resistance to the flow of water from the soil. (ix) The change in thickness of the
layer during consolidation is insignificant (x) The time lag in consolidation is due entirely
to the permeability of soil, and thus, the secondary consolidation is disregarded.

Ao, excess hydrostatic pressure is set up in the clay layer. At the time . the instant
of pressure application, whole of the consolidating pressure A g g carried by the pore
Water so that the initial excess hydrostatic Pressure i, is equal to' A ¢, and js represened
by a straight line_ u=Ac on the Pressure distribution diagram. The straig,ht line CEb joining
fhe water levels in the piezometric tubes represent this distribution. As water starts escapihg
mtc(l) rthe 'sand, ;ltlealfxt?ess hydrostatic Pressure at the pervious iaoundaries drops to zero
and remains so fmes. After a very great time #;, the whole of the excess hydrostatic

o Cdrnea witn vaimnoscd
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(b)

FIG. 15.5. ONE DIMENSIONAL CONSOLIDATION.

o that u=0, represented by line AGB. At an intermediate time f,
ure A © is partly carried by water and partly by soil, and the following
ed : Ac= Ad't u. The distribution of excess hydrostatic pressure

. 1 is indicated by the curve AFB, joining water levels, in the piezometric
T B known as isochrone, and number of such isochrones can be drawn
. . fme intervals 7, b t, etc. The slope of isochrones at any point at a given
1 e

e e of change of u with depth.

1

& indicates the rat | ' - .
At agy times f, the hydraulic head h corresponding to the excess hydrostatic press
| u ()
5 gien by h= o
Hewe the hydraulic gradient i is given by
oh_1 o NG
. 5; - Yw 0z

Thus, the rate of change of u along the depth of the layer represe;tsththz I:Zd;fl;;
Plient. The velocity with which the excess pore water flows at the dep

b Darcy's Law V=ki=;y% %-fz‘-_ ... (i)
Te rate of change of velocity along the depth of the layer is then given by ,

ov k U )

5;=-'Y_W -522_ endicular 0 the

width dy Perp

Consig
2 . 8 i i d of
Phne. | small soil element of size dx, dZ, an N e elements

Vis the velocity of water at the entry into

EXit vy
Will be equal to v+? dz
Z

the velocity at

Scdileu wiurcanmsca



SOIL MECHANICS AND ko,
| D

Mgy

he soil element = v dxdy

ov
+_.__dJ .
Vv Z Z dXdy

of water entering t
eaving the soil element =[

The quantity

quantity of water |

The
Hence the net quantity of water dq squeezed out of the soil element e
ov T up
 time is given by A ™ de dy dz
"'('V)

e in the volume of soil is equal to the volume of water squee
Zed
out,

15.4. AV =—my Vo Ac’ |
me of soil element at time to=dx dy dz. (v

The decreas

However, from Eq.
V, = volu

where
. Change of volume per unit time is given by
oA i
AN _ _ o ar dy dz 28
ot ot ++.(vi)
g ©) and G, we gt ovm-my 2ED
Now Ac =Ac'+u , where Ac is constant.
AAc’) _ é@_ :
ot ot - (i)
Hence, from (viii) and (ix), »_ |
0z ot (1)

Combining Egs. (%) and (x), we get
du_ k du
& .(15.16

or ou _, o
o 5 | (150
where ' .
¢y = coefficient of consolidation = (15.18
_Ki+ed " '
. (1519

Eq. 15.17 is the ic di :
of change of excess hydbrz:)sslfa t.dlfferentlal equation of consolidation which relates the ©F
from a unit volume of soil duri = BIEAS 00 the rate of expulsion of excess pore Wi
¢, used in the equation is alc?ogptT; Stamf: :ilme interval. The term coefficient of consolidai®"
o indicate the combin ili
ed effects of permeabillty and

compressibili :
iy SOIl‘;ti‘ of soil on the rate of volume change. The units of 2/sec
iy ION OF THE CONSOLIDATION EQUATION* e

The solution of :

the differenti :
the Fourier serie ettal ‘equation . of idation i f
: s. The . : consolidation is obtai means ©
[Fig. 15.5 (a)] : solution must satisfy the following hydraulic ligfsdalr);, condition

o ldllined witli udinocld



cOMP"CTION ' ‘ ' 419
. er stress-strain curye and h . '

: has @ steep. €nce has a pi her
Opumme one which 15 compacted wet of opt g mod

! | ulus of elasticit ,

. . Optimum  (Fig, 17.12), ¢
ed et of optimum have britje fail ' i

a

at the same density, Soil

ease ted wet of optimum, ang
M strength even at hipher strai
g, Shear strength : The shear strength g ns,

ompacted clays depend upon (i) dry dep.
) moulding water content, (iii) soil
slty.c re (iv) method of compaction (v) strain
st;:d to defined strength (vi) drainage conditiop
:nd (vii) type of soail.

In general, at low strains, strength
of cohesive soils compacted dry of optimu,
is higher than those compacted wet of op-
gmum. Fig. 17.13 shows the failure envelope
of two samples of the same soil, one compacted

Dry slde

Shear stress —»
]
| r
[
'
=
ol
[42]
o
[0 ]

dry of optimum and the other compacteq - Normal stress — /
wet of the optimum, but both compacted FIG. 17.13 FAILURE ENVELOPES

at the same density. However, of higher ‘ .
srains, the flocculated structure of the Same compacted on - the dry side is broken, giving
rise to ultimate strength for both the samples. The manner of compaction also influences
the strength of soil sample compacted wet of optimum, [t Is interesting to note that the
clay cores in earth dams are usually compacted wet of Optimum to tolerate large settlements
without cracking,

maximum dry density corresponding to zero air voids
at the optimum water content ?
. Gp
Sol . = Ld
lution Py WG
N
0.17x2.68 Gp, 2.68
: = = = 1.485
b+ S Pa  1.82
§= 017 x268 oot 04% ;4 =1-85=1-0.54 = 0.06 = 6%
0.485
_ (1 - no)Gpw
a7 1+ wG
(1 =)= LB2UHOATXDEB) 00 or pa=1-0.99 =0.01 = 1%

2.68

When n=0(S=1), theoretical dry density at w=17% is given by

ocdllirea witli vdlrnoacd



SOIL MECHANIC,

420 S AND LTI

: Moy
Gpw_ _ 2.68 x 1 = 1.84 g/cm’

Pe= T wG =~ T+0.17 x 2.68
The corresponding dry unit weight is
y,=9.81 p,=9.81 x 1.84 = 18.05 kN/m’
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Example 17.3. Work out r{zeoren'cal maximum dry density for q soil ,
27 and OMC=16%. Also explain the difference in OMC vaiye o Sample having p, g, of

: : in case o '
t for cohesive soils and granular soils. f Proctor testand modifieq

r 1es
procto (Engg. Services Exam, 2001)

Solution : Yd4,max occurs when § is maximum, i.e. when §=1

G Yw G Tw
Yd , max = e =
| +2G 14w G
G pw 2.7x1
Hence Pd , max = LT = = 1.885 g/cm’

1+wG 1+0.16x2.7

Example 17.4. A cohesive soil yields a maximum dry density of 1.8 glcc at an OMC of 16%
during a standard proctor test. If the values of G is 2.65, what is the degree of satration ? What
is the maximum dry density it can further compacted 10? (Gate Exam. 1992)

Solution : Given pg =1.8 g/cm3; w=0.16 ; G=2.65

_Gew_, _26x1 ,_oum
pd 1.8
WG _016x 2.65 _ 1.8979 = 89.79%
e 0.4722
Now pd=—@‘—"(-;— . when S=1, we get
L+5
“Gpw _ 2.65x 1 =1.861 g/‘FmJ

Pd, max = 1+wG—1+0-16’<2'65

v
gy VABORATORY EXPERIMENTS CRTIES
ERIMENT 17 . DETERMINATION OF COMPACTIONF ROE

s to determinc the relﬂ“onsdiﬁe
¢ compaction) Of = din

and the correspon ) jstance
ontent hip between penetration res
Jations

hip between water

‘ ‘ Test
cOmemOal:l_Lect and Scope. The object of the experimenrtr ;{ igh d Proctor

Y co dry‘ density of soil using Standard Progtor ewater C
dry dénsit;n l:'actlon)’ and then to determine the optlm“_m jon of r€
g Or a soil. The test also covers the determl@“

Content for the compacted soil.
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me
g’ 5
» » l3
e Kp 12 where Kp =cos B €08 B + Neos? b — cog?
J cos P -
) Cohesive backfill : tor the case of cohesive soil, :
(. qcipal stress relationship at failure is given by - jac tana
f |
e P g, = 03 tan” & + 2¢ tan a ;
. |
for the ©€as¢ of passive pressure, ;
g1 =Ch=pp :
o3 =0y = Y2 H :
}
gubstituting these values of o, and o3, we get E
pp=72 tan® o + 2¢ tana ...(20.46) E
" pp=yzN¢+2c\JN¢ \
A z=0, pp =2ctana e ;
2 2
At z=H, pp=yHtan o +2ctanac : 2‘cta'n’i‘u_“7Htanu—'i
Fig. 20.13 shows the pressure distribution diagram. The  gG. 20.13 VARIATION OF
otal pressure s given by : PASSIVE PRESSURE :
H COHESIVE BACKFILL.
Pp = I ppdz= % y H*tan’ o + 2cH tan @ ...(20.47)

0
‘ ?Pméﬁo &0 = Y H Ny +2cH VN | .(20.47a)

Example 20.2. Compute the intensities of active and passive earth pressure at depth

of 8 metres in dry cohesionless sand with an angle of internal friction of 30° and unmit
weight of 18 kN./m’. What will be the intensities of active and passtve earth pressure I

k . 22
the water level rises to the ground level ? Take saturated unit weight of sand as 24
N/,

Solution. (@) Dry soil :

i 1+sin¢ 1 _4
— H — nsoo . . - =-'-’_=J
il B - ] v BT T sing K

=3

rl| o —

Ka-_-'___.——.—-—-'_______f__.——o-—
1 + sin ¢ 1 + sin30°
pa=Kay H=73% 18 x 8 = 48 kN/m’

Pp-:_-KpYH=3>< 18><8=432kN/mz

(b) Submerged backfill :

3
Y = Ysa =YW= 22 - 9.81 = 12.19 kN /m

Pa=KaY'H+T\vH=%-x12.19><8+9.81><8:=111 kN/u;/ 2
: _ 371 kKN/m
PP=KPY'H+YWH=(3><12.19x8)+(9.81>\8) 37

i

erical back. The backfi

Example 20.3. A retaining wall 4 m high, has a smooth \u{'“:f"ébrmh‘ distributed

s horizontal surface i level with the top of the wall. There I8 ot of: e backfil
S Charge load of 36 kN/m* intensity over the backfill. The unit weig

Scdileu will canisea



12 : H : 607
3 FC = ==C

H
- ..(23.13)
the factor of safety F. with respect _
?i; respect to height, It ;s based (fn th:) a‘;ts)hesmln, also represents the factor of
afet) | is fully developed. However, umption that the frictional resistance

sO X the true .
4 1 %% equally applied (0 both coesio e L safety iy ailiggent from
"l

n and frictional resistanc i
Submerged slope If‘ the slope is submerged, y should be r;la‘i;o;; ‘o als
C od O should be determined corresponding to submerged condition. o
_¢+y'zcos’itang
Y'zcosisini Sall3e @)

Thus, F

< _ 1 o sec? i

| Y' (tani-tang)cos’i Y' tani-tan ¢ ...(23.80)
Steady seepage along the slope : As in the case of non-cohesive soil, v should

pe taken Wit respect to saturated weight (y,,) while o should be computed with respect

o the submerged weight. Hence Egs. 23.7 is modified as under

C+Y'Z.coszitancp_ c y' tan@

He

F=

Ysa1 ZCOS i SiNi  Ysa COSiSini Yar  tani
For the critical height z=H, corresponding to F=1, we have from above

Ysat Hecosisini=c+y' Hecos®itan @

' - c
which gives H. < = , ...(23.8 D)

= . ' P
(Ysar tan i —y ' tan @) cOS™E {tani—%—m—tan (p} cos” i

Comparing it with Eq. 23.8, it is seen that the effect of shearing resistance ¢ is
reduced as compared to Eq. 23.8. | |

Example 23.1. A long natural slope of cohesionless soil is inclined at 12° 1o th_e
horizontal. Taking @ =30°, determine the factor of safety of the slopf:;. If the slope Is
completely submerged, what Will be change in the factor of safety

- Tc _ tan (P
Solution : From Eq. 23.6. F=7T =T o
tan 30°
o ; o L = = 2.72
¢ =30°% i=12 " F tan 12°

Here

Effect of submergence: When the slope 1S submerged, y is replaced Dby y!
ect 0 .

(' zcos’ptng e I, g
= y’zsinicosi tani tan 12
cept that @ is to be determined under submerged

Te
Pr
i . the same, €X
Thus, the F.S:Wwill remain t

Condition. ‘ andy soil (=25 is inclined at 10° to
ural slope of S ,
ple 23.2. A lorf;i le"‘;i at the surface and the seepage is parallel 10 the slope.
the horizontal. The water

o ldllined witli udirnocld
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If the saturated unit weight of the soil is 19.5 kN/m’, determine the factor of Safery o
the slope.

-~

' — 9.81) tan 25°
_ y 'tano (19.5 9 -1
Solution 40111 Eq. 23.6 (a), F= oo tan i = 19.5 tan 10° 1.31
s Example 23.3. A long nawral slope in a ¢ - ¢ S0il is inclined at 12° to the horiy,

. lal,
The water table is at the surface and the seepage 1S parallel 1o the slope. f g Plane
slip has developed at a depth of 4 m, determine the factor of safety.

3
r\g{\ Take c=8kN/m2, Q= 22° and ym;=]9kN/m .
C\ N - “Solution
,‘_[‘ /‘/:"!

(&

-~

” 2 120 o
< c+y’zcoszitan(p_8+(19'9'81)’<4COS 12° tan 22 B
<" From Eq 23.7 (b) F= Yo 2 COS e i = 19 x 4 cos 12° sin 12° = 144
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