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PAF!TIAL DIFFEHENTIATION

The product ru le, quotient rule and the function of a function rule continues Thlold -
e pr ’ e
ood here also.

Observe the followmg COmP““SOW’ —

sl F

T TTT——

—— Ordinary derivative Partial derivatives =\
14 § BN —
- — I W) 2 -
L y=3_~(2+6,\'+7 1. ;al” 3 J-I-ﬁxj L7 “
%‘-li_=(i_r+(i+0=6.\'+6 o =(6x)y+6-1-y 240 =6xy + 6y \I
= [y is treated as constant] i
gﬂ—B X 1+6x-?_y+0=3x2+12xy
Y -
J [x is treated as constant] i
|
5 fy=cJ‘"+3 2|y = e4x+3y
‘g %:c4\-+3_%(41_+3) %L;l _ A3y %(4x+3y)
! [ =e4.r+3_4___4eslr+3 _ e4x+3y_ (440) = 4341'+3y !
i! r] g_;l:e‘l“?’f‘"i(éx+3y)
‘f ! R e (0+3) e s
/3. y=sin 5x - - 7 1 B3 u=sin xy)
| dy - | du
] JE"=COSSI-5=5COSSX ) 5 5;—(:05(3(./)—(1]) cos(ry) -
/ ! | | du
[ : : @_COS(T_/)—(JJ) cos(xy) x
4 . -1 4
/ y=tan (2/x) ot Vg, 2 e 1 . 9(y
T _ﬂl_(z] O L (y/x)t X
| a1y (20 dx| P S O A T
! N e 2 2 ! x2+y2 x x2+y2
/ P4 A s ou_ 1 afyy - 7 | ==
, Ay 1+(y/x)’ WX
| U
} x2+y2 x x2+y2
d , dy 5. | If r isafunctiorof x and vy,
S WD=f ()3 ; one. ¥ and- ¥
(=3
J ,, or
" —[f()]=f(r)—
S =F 5

General principle of partial differentiation

Given a function of many independent variables, the derivative of this function with
respect to a particular independent variabie, keeping (treating) all other independent
variables as constants is the general principle of partial differentiation.
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174
gher order partial derivatives

Hi
These are also analogous with the higher order ordinary derivatives. 3

Let us suppose that u = f(x, y). The development £ hi _
derivatives is as exhibited below. P of higher order partial

=qhy)
i First order partial derivatives
i = @ u = —al—[
v ox - y dy
l Second order partial derivatives l
_— 9 [du) _ 62_u y o0 (du) du
x 9x|ox ) ad | w- oy l\dy) af
9 [ou)_ P Mixed = d (ou o u
- um_ay o0x | a Jax N parhal derivatives - XJ “ox | oy Y axay
ffaridrso;ohr

It is very important to note that; it
| Al Bt 17800 Foe
dyox odxdy - ¥ W

WORKED PROBLEMS
Set-3 ’

Type-1 Direct partial derivatives

Given an explicit function of more than one independent variable we find the required
partial derivatives just keeping in mind the general principle of partial differentiation
stated earlier along with the well acquainted rules of differentiation. The following

note on symmetric functions will be highly useful for certain problems.

Note : Symmetric function : A function f(x,_y)_is said to be symmetric if
fle ) =f(y x) and a function f(x y.z) is said to be symmetric if
f(xoy z) = f(y, 7, x). = flZeXell), In general we can say that a function of several
variables is symmetric if the functzon remains unchanged (invariant) when the variables are
cyclically rotated, Observe the following examples.

2 1ok
, +g 7
(1) xX+y, x2+y2, : Y x2+xy+y2, log x2+y2 etc

are symmetric functions of two variables as it can be easily seen that when x is replaced by
y and y by x the functions remain the same.
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o 2
(ii) X+ yz + 22, xy+yzzx, x/y+y/z4z/x, log (x+y+z),

IR
X+yT+ 21—3.\'_1/: ele.

are symmetric functions of three variables,

It is very important to nofe that, if we have a synnielric fintction of three variables say

u = f(x, y, z) thenby just computing u, or u . or u_nj we can simply writedown
easily the other partial derivatives.. (u 0l ) or. (.14 - M, ). 08 (2 gz My ). by simple.....
guess work. There is no need to show the wmkmg of similar computation of partial derzvuhves

69. If u = x’-3xy +x+c cosy+1, show that Pu + P u = 0.
‘ | ' o o

Wehave u = ¥ - 3x/ +x+¢" cosy+1

? = 3x2—3y2+ l1+e‘cosy ... (yi is tre&ted as constant.)
X ) = = =
Differentiating this w.r.f x partially_ again,

_ju = 6x+¢" cos j .. (Again y is treated as constant.)
Next, %’i = —61y exsm J (r is- treatredras_constaﬁt.)'

Y ST
Differentiating this w.r.t y partlally agam

u ! : . Laise

— = —6x~-¢c‘cosy ...(Again x is treated as constant.)

%

82 u 9
Now y2 = bx+e" cosy—6x- ¢ cosy = 0

Thus we have proved the desired result.

/7

70. If u =e"27rztsinnxsinny show tha 22 7 =5

L}

27t

>> Wehave u = ¢ “" "sinmxsinny

- .2 .
L e 2" t(ncosnx)smny (t & y are treated as constants)

ox

Differentiating this wrt x partially again,
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2 2 5
LA 2N op?sinnx)sinny = - u

1
ox?

2
du = ¢ 2" ginnx(ncosmy) ...(1 & x aretreated as constants)

dy

Differentiating this w.r.t y partially again,

2 2
_a_g_ = fsinmc(—nzsimty) = -1’ u
ady -

2 2
Hence LHS = g + Q—I—t = —nztt—rczu = 21y
2 ayZ

ox
ou 212t 2. . : & breated
Also 3 ¢ (-2n°)sinnxsinny ... (x & y are treated as constants)
t -
i ou = N . , : :
ie., RHS = i —ZMuEC TR (2)

Fu  Fu e
Thus from (1) and (2) gj +-ay2 =iay e

DIFFERENTIAL CALCuLys 2
-

(1)

2412 | |
7L If u = log[—x—:yy- show that Xu YU, = 1

>> u=log(x2+y2)—log(x+y)'

1 1
y = 2 -— 1 i
o XZ'I'_I/Z xty
and y = L W - —— . 1
2y Y Xty
2 2
X 2
Now, xu +yu, = . SR M

20547 (xty)

xz+y2 x+y

Thus xux+yuy =1
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80. If u= e"l_+lyf(ax—by), proyethat b-&gﬂla—y = 2abu

>> U= e"x+byf(ax—by){b_ydat_a. :

g% = ™ -f’(ax—by)a+aeax+byf(ax—by)
al[ ax+b ’ -
or — =g (ax-by)+au
ox 7
Next, % = e“”byf’(ax—by) ' (—b)+be“x+byf(ax—_by)
or %z—be“x+byf’(ax—by)+bu
dy
_ ou  du .
Now consider LHS = b5;+a§g by using (1) and (2).
= b{ae””byf’(ax—by)+au}+a{—bé’“byf’(ax—by)+bu}
= abd™* W 7 (ax by )+ abu—abe"™ " V7 (ax=by) + abu
= 2abu = RHS
Thus bg”—[+a§£ =2abu.
ox  dy
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- Problems on symmetric functions

- 72 -2
8. If u-= 1054\ +I/ 2 show that (x> 1y 2y | t Jou

/

X Jy”

SRR

—"73‘“'_7‘_‘".
>> Bydata u = log\].\"“ -1-_1/21~,: 10;,

The given « is a symmetric function of x, y,

(It is enough if we compute only one of the required partial derivative)

du 1 1 L X

ox 2 .1'2+y2+z2 xz+y2+z2

a'lu__a_ du) 9 X
or  Ox 9 |~ ox x2+y2+z2

_(x +y2+zz)1—x-21 y2+z?‘—x2

e., =
) (.\'2+y2+22)2 (.\'2+y2+22)2
) yu_ f+£—f
- - - l')
ox’ (x‘+y_2+z2 )

2 2. =Tsn
e u o+ x -y
Similarly = J

P (Rl

-7
0 u\
t 5= 1

Jz

()

)
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el _ -"'243'/2"22
) i3)

022 (44 z
Adding (1), (2), and (3) we gel,
3% u 3 Pu X2

+ = =
ox? ay2 922 (x2+J2+z22 x2+y2+z2

3
Thus (x +y2+zz)[a" a; auJ 1
'a

2 2 2
8
84. Ifu = N - then show that 4 12! + M = =
\/12+y2+22 ox* oy 6‘22
>> u = ( 2+ y2+7_2 ) e isasymmetric function of x, y, z,
du 372 N 2. -7
P (x+y+z) r-?.x (x+j+Z) e

ai[aﬂ' a{(x *Jz”)m.x}.. | | N
{(x2+y2+z2 )_,3/2 --1+x(—§](‘xz';yz%zz)—S/z_'2"} -

(PP + 27232 (P4 Y 52

ie., ir—;l = 33(2(Jc2+y2+22)_5/2—(x2+y2+722)_'3/2 | '“‘(1)
Smularly ; yz— R e M € ot A0 i | ez @)
2
%: 32 (PP 2) T (Pt a2y ... (3)

Adding the results (1), (2) and (3) we have,

> u . O u . o u
S TR

=3(P 4P +28) 2 (P P ) -3 (PP 2R )
= 3(x2+yz+zz)"3/2—3(x2+yz+zz)'3/2 = {

Thus azu au 3211_0

dx” af
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DIFFERENTIAL CALCULUS - 2

85. If u = log (+° +yP+2 —3xyz ) thenp;ovc, Hmtau L L SR
dx  dy MF" X+y+z
and hence show that [ G + i 1 ﬁ_] U= —
dy 0z (x+y+z)
>> u = log(x3+y3+x. -3xyz) is a symmetric function.
du 3x% - 3yz
a\ o oy S £ 3XYZ. wveen
@ B 3y2—32x
dy x3+y3+23—3xyz
ou 322—3xy

0z x3+y3+z3—3xyz
Adding (1), (2) and (3) we get, _
du  du  du 3+ +zi-xy—yz-zx)
3 oy oz TmeqaBi BB m
dx dy oz (F+y +z7-3xyz)
Recalling a standard elementary result,
R R 3abc— (a+b+c)(a +b2+c —nb -bc—ca)
we have, - :
~du au i 73(x2+y +zz—xy.—yz'—zx)

B BJ g—(x+y+z)»(x2+y2+zz—xy—yz—zx')

ou oJu Jdu 3

Thus S Yoyt oz xeytz

2
d d  d
Further [ » + 3y + BZJ

(3,0, (2,2, 2),
“lox dy dzf|ox oy oz

(2,0 @) o, o
“lox  dy oz ox 8/ 0z
3
= % + 9 + = , by using the earlier result.

dy 0z )| x+y+z

J 3 . 3 0 3
= Tt o ==
ox (JH—/-!—ZJ ay[x+y+z] az(x+y+z}

-3 -3 -3 - -9
= 7 T 2t 2 = 2
(x+y+z) (x+y+z) (x+y+z) (x+ty+z)
2
Thus _@_+_‘?_+iJ u= -
ox dy 0z (x+y+z)

()
)

.- (3)
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1233] H i
33| Homogeneous function and Euler's theorem

Definition : =
A function u f(\ 1/) is said In lwn Immny(num"functzon ofdcgree n

if it can be express the ey r
function. QCLLL__\_t____nm X b(J/‘) ()r '/ 8 (x/y) g being ¢ any arbﬂrary

Similarly a function v = f(x, y, z) issaid to be a homogeneous functirm of degree n if
it can be expressed in the form x"g(y/x, z/x) or ¥ g(x/y, z/y) or
¢ (x/z, y/2).
Observe the following examples.

1. u=3x+4y ; rr:x[3+4(y/x)]=x1g(y/x)
— 1 is homogeneous of degree 1(ie,n=1)

2. u=x25in(y/x)+y2cos(y/x)+xy

u =X [sin(y/x)-t-(1//x)2cos(1//x)+(y/x)] = g (y/x)

= u is homogeneous of degree 2(ie,n=2)

3 ned y+lj21€ I = x [(J/l)+(]/1)]‘xsg(y/x)
= i 1shomogeneous of degree 3(ze = 3) '
4. U=Xx ytan—(l/j)+x1/ sec (x/J) . 7
a = 3] (Pt () (5/y ) sec oy | = vty
= J Bnomogeneous of degree 4 (e, n =  4) ' -
Ay + N 7
5. =" \[y—
) x5/Z y/x+(1/
e | he x[l y/x}
ie., u:f[—@%}?)ﬂ=ng(y/.\‘)
= i is homogeneous of degree 2 (ie., 1 = 2)

h

PRl L &
. u = \/f+\/y_+\E

. 23y ra ()]
ie., E TR 1Ny + (z/x)]
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2 :
e 2B AT gy, 2/%)
N ' 14 Vy/x + V2/x
= u is homogencous of degree 3/2 (e, 11 = 3/2)

Euler’s theorem on homogeneous functions

e ———— : I3 n
* Statement : If|u = f(x, y)[ is a homogencous function of IICH"“’_’LH’E

} du an
X—4y—=1nu
Jv ..

. LA LR R L R L L L L R . Geadanicasnsssaadaidiinaass viiciiiissssdasessassaasassssRsos TS
ol i . IFRETTT e

Proof : Since # = f(x, y) isa homogeneous function of degree 7

we have by the definition,

u=2x"g(y/x)
Let us differentiate this w.r.t x and also w.r.t ¥,

@ o, A n-1 :
E A (y/x-) . (_xz]ﬂzx_ _g(y_/x)

ie, = =-x""lyg(yayend gy -

e, o= lg(y)

ou

Now consider x -~ + y-- asaconsequenceof 2) & (3). - -

dor 7oy

= x[—xn_zyg’ (y/x)+n x”r_lg(_yr/_xf) }-@y[x'

1

= —¥ 'lyg’(y/x)Jrnx”g(y/x)H

!

=n-x"g(yx)
= n u, by using (1)

Thus we have proved Euler’s theorem :

xaqulBu .
B ~ =HUuH ; xu wyu =nu
or " 7oy x Ty

.. (1)

b B
“lyg (y/x) |

Note-1 : This theorem can be extended to more than two independent variables also, Suppose:

u = f(x, Y, z) isahomogencous function of degree n, then the associated Euler's theorem

is given by
ﬁé{{+t%+z@—nu
jxax /a}_/ 0z
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,7 Addmg these usmg the fact that 8j ar ox au’

R
E or : ox* dx dy

PARTIAL DIFFERENTIATION 2Q\
: -

Note = 2 : The theoren can also be extended for second order partial derivatives and we prove

the associated result.

Statement : If 1 = f(x, y) isa homogencons function of degree 1 then
' — —

Proof : Since w = f(x, y) isa homogeneous function of degree 1, we have Euler’s

themem

du ot
161+ ajznu "'(1)_
Differentiating (1) partially w.r.t x and also w.r.t y we get,
9% u ou 9% u 0
e <
82 i ( 82 (TSR au‘f au o
i) y 81 \ By = 8 R z _
Weshallnowmulhply(Z)by X and(S)by J it E

2
28 uoou . e I R [T
+x——+rl —nx—.and

a al aA aj ax  7 2 j 5 _.
az ” i 82 u a“ ST .,,,_,j g , = =

X1 + == + Y '111 e e s e
32 1 '82 it A e

Also,

we get

( 'azu 7 azlu» \ au au) | ( ou Bu)
207U , Iy
tl o +'2xj‘axay ay J ( faj a7y

2 Py 4% e
: 23 I . u +12——+n U= n(nu),byus1ng(1)-
ie., = 42Xy 9x 3y Yy ayz |

—_—

2 2 '
azu+2xy—a—y—+1 a H"‘H(Hll ~—nu=n(n-1)u
%’

|

D) 2 2
J" u +y2§——li =n(n-1)u

.-Thus xzﬂq'lel
» az dx dy d1

X

RRE——

2 =n(n-1)u
X uxx+2xyuxy+y2uyy ( )

ie., I
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DIFFERENTIAL CALCULUS - 2

e

‘\"1": :
(1) This result ©

) ) 2 .
? . ) - -
['Xax'erayJ = n(n=1)u

an also be putin the form

J

(2) Theresultcan also be established by starting from the basic definition of
homogeneous function.

WORKED PROBLEMS
Set-5

Verify Euler’s theorem for the following functions. -

95. u=13+12y+xy2+y3 9. u =y log(x/y)

ous of some degree and

Note : We have to first ensure that the given function is honogene
which will enable us to

then compute the first order partical derivatives of the given function,
verify the theorem.
With reference to the given u we have,

u= b [1+ (y/x)+(y/x)2+(y/x)3} = x3g(y/x)
=5 u is homogeneous of degree3 .. 1 =3

Also form the given 1 we have,

M _ L
ax—3f+2xy+y, By—x2+2xy+3y2
du I
We have Euler’s theorem: x7— + y5— = ni
ox 7oy

LHS = x (3% +2xy+ 1) +y (P +2xy+3y°)
= 3x3+2x2y+xy2+x2y+2xf+3y3
= 3+ 3% y+3x P + 3y
= 3(x3+x2y+xy2+y3) =3u = RHS since n =3

Thus Euler’s theorem is verified.
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%. 1 =y"log(asy)

This is a homogeneous function of dcgruc it by the definition.

g=y'm'f=\ - (1)
%:y" (1/1/ ["%]MIJ” llog(x/J
o g_;=—y” " J" : o) , (2)
From (1) and (2) we have,
1% + yg—; =2 8 ;+y[—y”_1+ny"_l Iog(x/y)}

=j / +Tl_/ 100(1/j)
= n[l, 10g(r/y)] _.nu

Thus Euler’ s theorem is Verlfled

Standard type of problems by applymg Euler s thﬂorem

Given u = (x y) or u =1 f (x Y ‘z) or Lhe1r equwalents(lzke log i, sin 1, ) '
ashomogeneous functions the computation of e o :

(1) XU +yu (if) - .1 1, +21/1£U+jzujj' |
can be done very easily by applymg Euler's theorem. -

Flow chart for solving problems

We have to flrst express u or its eqmvalent in the approprlate form according J

v

We then apply Euler's theorem to u or to its equivalent to obtain the result (i) J

v

If the given u itself is homogeneous we can as well directly apply the \
extension form of Euler's theorem to obtain the vesult (i) | 4]

L}

Vv

However if an equivalent form of u is homogeneous it will be easier to obtain \
the result (ii) starting from the obtained result (i) proceeding on the ‘
same lines as we derlved the extension of Euler's theorem involving

second order partial derivatives.
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I
X + du du 5
97. If u = _\/1—1_—% show that Yo + Y= 3y - 2 u
3,..3

We have u = %
. IC0ZI - 52 }_J“_(y/_xﬁ} g (y/x)
ie., \[_[m W

= u is homogeneous of degree 5/2 .. 1 =5/2
du u
o {

We have Euler’s theorem  x . + Yy o = 1

ou b

du
Putting n = 5/2, we get x5—+_/5j=§t 7

98. If u = \Jx4+y4 'tam'1 (y/x), then show that

_ .2 2
AU kY M =2 M KXY M FY My

>> u=Nx*+ y4 tan™ ( y/x) by data.

= VA 1+ (y/x)t ] tan” ! (y/x)

=2 [Vi+ () an™ (yn) | = g (y/x)
= u is homogeneous of degree2 .. n =2
We have Euler’s theorem and its extension given by
Xu tyu, = nu

.. (2)

xzu cF2X] Yy, +1 j Wy = (N = L) M

Puting n = 2 in (1 )and( )we obtain
_ 2
xu tyu, =2u and x uxx+2xyuxy+y2uyy=2(2—1)u=2u

Thus we have proved the required result.
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4 Total differentiation |

iFu=f5Y) then the total differentia] o the exasy: _
) act d ' .
1 du = Ju du ' : ct ltferentialof y s defined as

—dx + —(
o gy ™

Differentiation of composite and implicit functions
TIIFEEFUE y) fwhere x and y are
u_is said to be a composite function of the

mncﬁons of the indepen
S_l:-z_gi@ariable t.

Als_o if u=f(x y) where both r and
variables 7, s then i 7

dent variahle ¢ then

wie , Y are functions of two inde endent

15 said to be a composite function of the two variables 1 am}; 5.

Tﬂ'?e fﬁ;mfrlple of differ.entiation of composite function is very much similar to that of
e function of a function rule associated with the ordinary derivative of a function of

a single independent variable, ~ - L

We discuss two types involving parﬁal derivatives..

Type- (i). Total deriv-aﬁ#e-rule

If u=f(x, y) where x = x(t) and y =y (t) then u isacomposite function of
the single variable . Therefore in principle we should be able to differentiate u with
respect to ¢ which is an ordinary derivative.

Thus we have with reference to (1),

du _ dudx  ou dy Q)
dt ~ ox dt 9y at

This is called as the total derivative of u.
Type - (ii). Chain rule

If u=f(x, y) where x = x(r, 5) and y =y(r,s) then uisa composite
function of two independent variables r, s. Therefore in principle we should we able
todifferentiate  w.r.t r andalsow.r.t s partially. Thus we have the following chain
rules for the two partial derivatives. It is convenient to write the rule having the data

analysed in the following format.

u

: dar
= (x, y)—>(r.s) = u-(r,s) /

N

ds

or u dy

dui auaer@_ay_@_@aer
or Oxdr dyadr '3 Odxds Oy ds
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Note-1. Therules (2) and (3) can bceq!nbﬁslzcdﬁ‘om the basic limit form definition of
a partial derivative.

2. The rules (2) and (3) can be extended to functions involving more than two
independent variables,

3. Therules (2) and (3) can be successively applied for getting higher order derivatives
of the given function.

4. Thesymbol = is used only to indicate the composition of the variables so that theassoczated
rule can be written conveniently.

WORKED PROBLEMS

Set-5

Flow chart for solving problems (Total czleriVatiye & Chain rule)

We have to analyse the composition of the variables and write the
- appropriate formula. ' '

e - i
We then substitute for the possible dem atives in the formula and snnphty
according to the reqturement of the desn edresult.

Find the total differential of the fbllbwing fz:nétibns;

112. x = rsin® cos o

111. u = x3+xy2+,12y+y3

..-._11]_~Wehaveu%x3+xyz+x2y+y3 bl - y}
du du
duy = —dx '+ —di
dx dy 4

Thus , du = (3}.}+y2+2xy)dx+(2xy+x2+3yz)dy

112. Wehave x = rsin0 cos ¢ ;x> (r, 0, ¢)

dx dx
dx = ad +aed8+ ¢d¢

Thus dx = (sinBcos¢)dr+(rcosBcosd)dd+(—rsinBsind)do
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A8z E Xy AN Y o x = at, y = 2at

dz . e
{2—9 (x, y)— t, =zt k& n is the total derivative.

z 0dz dx 0z dy

dt " ox di | 3y dt
=(y2+2xy)a+(2xy+x2)2a
= (4P P+ 4P Pya+ (4P P+ ) a

- (8 a?P)a+( 542 £ ) 2;1=8a3t2+10a3t2=18ﬂ3f2_,,

d _
the total derivative Zi? = 184 # ' ... (1)

Now by direct substitution we have,

Z = xy2+x2y = (at)(2at)2+(at)2(2at) 4P 2P =627 P

ie., z =64 and differentiating w.r.t t,
d
d—f=6a3-3t2=18a3t2 .

Thus from (1) & (2) the result is verified.
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123. If z = f(x, y) where x = ¢"+¢ %, y = ¢ ¥ =¢

rove that 1% gl 0 52
j ox /a/ du dv
>> {z—a(x,y)a(u v)}:>ze(u,v)
e _dw Dy k2 _ %k by
du Oxdu dyodu v Ixdv Ay dv
. é_@ oy 0z —u
52 du  ox aj( £ |
_% o2 0 ‘
0~ ol )+By(_e) s
Consider, RHS dz; e and (1)=(2) yield |
T T u v )()yles
% U, —v Q_ -u._ a~ e %
ax(e +e_) aj(e Bt = 81 '1—81/ i
gz 0 0
% av xax - jaj Thus "RHS = LHS
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